The Hopf Algebra of Uniform Block Permutations. Extended Abstract

نویسنده

  • MARCELO AGUIAR
چکیده

Abstract. We introduce the Hopf algebra of uniform block permutations and show that it is self-dual, free, and cofree. These results are closely related to the fact that uniform block permutations form a factorizable inverse monoid. This Hopf algebra contains the Hopf algebra of permutations of Malvenuto and Reutenauer and the Hopf algebra of symmetric functions in non-commuting variables of Gebhard, Rosas, and Sagan.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hopf Algebra of Uniform Block Permutations

We introduce the Hopf algebra of uniform block permutations and show that it is self-dual, free, and cofree. These results are closely related to the fact that uniform block permutations form a factorizable inverse monoid. This Hopf algebra contains the Hopf algebra of permutations of Malvenuto and Reutenauer and the Hopf algebra of symmetric functions in non-commuting variables of Gebhard, Ros...

متن کامل

A polynomial realization of the Hopf algebra of uniform block permutations

We investigate the combinatorial Hopf algebra based on uniform block permutations and we realize this algebra in terms of noncommutative polynomials in infinitely many bi-letters. Résumé. Nous étudions l’algèbre de Hopf combinatoire dont les bases sont indexées par les permutations de blocs uniformes et nous réalisons cette algèbre en termes de polynômes non-commutatifs en une infinité de bi-le...

متن کامل

Hopf algebra structure on packed square matrices

We construct a new bigraded Hopf algebra whose bases are indexed by square matrices with entries in the alphabet {0, 1, . . . , k}, k > 1, without null rows or columns. This Hopf algebra generalizes the one of permutations of Malvenuto and Reutenauer, the one of k-colored permutations of Novelli and Thibon, and the one of uniform block permutations of Aguiar and Orellana. We study the algebraic...

متن کامل

Structure of the Malvenuto-reutenauer Hopf Algebra of Permutations (extended Abstract)

We analyze the structure of the Malvenuto-Reutenauer Hopf algebra of permutations in detail. We give explicit formulas for its antipode, prove that it is a cofree coalgebra, determine its primitive elements and its coradical filtration and show that it decomposes as a crossed product over the Hopf algebra of quasi-symmetric functions. We also describe the structure constants of the multiplicati...

متن کامل

A note on the new basis in the mod 2 Steenrod algebra

‎The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations‎, ‎denoted by $Sq^n$‎, ‎between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space‎. ‎Regarding to its vector space structure over $mathbb{Z}_2$‎, ‎it has many base systems and some of the base systems can also be restricted to its sub algebras‎. ‎On the contrary‎, ‎in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004